In vitro investigations of ABC transporters of the human liver – advantages and surprises

نویسنده

  • Lutz Schmitt
چکیده

The hepatocyte contains a battery of membrane transporters in the sinusoidal and canalicular membrane that guarantee the regulated import and export of nutrients, messengers and toxic compounds. In the canalicular membrane, a number of important ABC (ATP binding cassette) transporters are located. Three of these primary active transporters, BSEP (bile salt export pump, ABC B11), MDR3 (multidrug resistance protein 3, ABC B4) and ABC G5/G8 catalyze the secretion of bile acids (BSEP), phosphatidylcholine (MDR3) and cholesterol (ABC G5/G8). These three molecules form mixed micelles in bile and thereby reduce the harmful action of unbound bile salts on membranes. BSEP, which was initially named s-Pgp (sister of P-gp) and MDR3 share a high sequence identity with MDR1 (P-glycoprotein, ABC B1), which is the hallmark of the family of multidrug resistance ABC transporter present in every eukaryotic cell. For BSEP the identity is approximately 70% and for MDR3 even 85%, respectively. Nevertheless, MDR3 is specific for phosphatidylcholine lipids and BSEP is specific for bile acids, while MDR1 is capable of translocating a myriad of structurally unrelated compound across biological membranes. This of course raises the question, which residues impose specificity in the case of BSEP and MDR3 and which residues impose promiscuity in the case of MDR1. Homology models of BSEP and MDR3 were generated based on the crystal structures of Sav1866 and mouse P-gp to obtain initial information about the putative three-dimensional location of certain amino acid residues of BSEP and MDR3. However, one has to stress that these “structures” represent only models that have to be used with proper caution. The homology model of MDR3 was helpful in providing a structural explanation for the non-functionality of the MDR3 mutant H1231Y. The mutant protein was properly located to the plasma membrane, but displayed a severe substrate transport phenotype. Histidine 1231 corresponds to the histidine of the H-loop, a residue that is critical for ATP hydrolysis in many other ABC transporter systems. Thus, exchange of His against Tyr in position 1231 of MDR3 will impair ATP hydrolysis in one of the two ATP binding site drastically reducing transport activity of MDR3 H1231Y [1]. To study the transport cycle and the importance of mutations within these transporters on their function, overexpression systems are required. We decided to use the methylotrophic yeast Pichia pastoris for the overexpression of two of the three transporters, BSEP and MDR3, respectively. Initially we encountered severe problems in cloning the transporters genes in E. coli employing standard approaches. Only after establishing a cloning strategy that is entirely based on Saccharomyces cerevisiae, both genes could be successfully cloned [2]. This allowed us to combine the speed and ease of cloning of this yeast system for the wild type genes and mutations that were identified in patients. Having this tool in hand, we overexpressed BSEP in yeast to study its transport function in plasma membrane vesicles. This allowed us to establish structure-function relations for a new clinically relevant mutation (G374S) that resulted in a phenotype between PFIC-2 and BRIC-2. Although membrane targeting was normal, e.g. targeting to the canalicular membrane was evident, transport activity of the G374S was strongly impaired [3]. The Sav1866based homology model of BSEP suggested that Gly 374 is lining the translocation pore of BSEP. Thus, an exchange to serine would impose steric restriction within the pore, thereby influencing the substrate spectrum as evident from the bile acid transport assays. Correspondence: [email protected] Institute of Biochemistry, Heinrich Heine University,40225 Düsseldorf, Germany Schmitt European Journal of Medical Research 2014, 19(Suppl 1):S18 http://www.eurjmedres.com/content/19/S1/S18 EUROPEAN JOURNAL OF MEDICAL RESEARCH

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABCG5 gene responses to treadmill running with or without administration of Pistachio atlantica in female rats

  Objective(s): ABC transporters comprise a large family of transmembrane proteins that use the energy provided by ATP hydrolysis to translocate a variety of substrates across biological membranes. All members of the human ABCG subfamily, except for ABCG2, are cholesterol-transporter. The aim of this study was to determine the liver, the small intestine and kidney ABCG5 relative gene expression...

متن کامل

Effects of Salinispora derived metabolites against multidrug resistance, an in-silico study

Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...

متن کامل

Dmd054528 448..458

Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expressio...

متن کامل

Recent Technological Advances in Hepatogenic Differentiation of Stem Cells Relevant to Treatment of Liver Diseases

Liver failure, in an acute or chronic form, is a growing health problem ranking as one of the leading causes of death worldwide. Inborn errors of metabolism characterized by defects in hepatic enzymes or other proteins with metabolic functions, such as receptors or transporters accompanied with environmental factors involve etiology and presentation of liver failure. Currently, the only establi...

متن کامل

ABC transporter research: going strong 40 years on

In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investi...

متن کامل

Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition.

Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2014